3.7.53 \(\int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx\) [653]

3.7.53.1 Optimal result
3.7.53.2 Mathematica [A] (verified)
3.7.53.3 Rubi [A] (verified)
3.7.53.4 Maple [B] (verified)
3.7.53.5 Fricas [C] (verification not implemented)
3.7.53.6 Sympy [F]
3.7.53.7 Maxima [F]
3.7.53.8 Giac [F]
3.7.53.9 Mupad [F(-1)]

3.7.53.1 Optimal result

Integrand size = 25, antiderivative size = 249 \[ \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx=-\frac {2 b \left (7 a^2+8 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{15 a^3 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2+8 b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{15 a^3 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {8 b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a^2 d \sqrt {\sec (c+d x)}} \]

output
-2/15*b*(7*a^2+8*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Elli 
pticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b)) 
^(1/2)*sec(d*x+c)^(1/2)/a^3/d/(a+b*sec(d*x+c))^(1/2)+2/5*sin(d*x+c)*(a+b*s 
ec(d*x+c))^(1/2)/a/d/sec(d*x+c)^(3/2)-8/15*b*sin(d*x+c)*(a+b*sec(d*x+c))^( 
1/2)/a^2/d/sec(d*x+c)^(1/2)+2/15*(9*a^2+8*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2 
)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2)) 
*(a+b*sec(d*x+c))^(1/2)/a^3/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1 
/2)
 
3.7.53.2 Mathematica [A] (verified)

Time = 0.81 (sec) , antiderivative size = 193, normalized size of antiderivative = 0.78 \[ \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx=\frac {\sqrt {\sec (c+d x)} \left (4 \left (9 a^3+9 a^2 b+8 a b^2+8 b^3\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )-4 b \left (7 a^2+8 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )+2 a \left (3 a^2-8 b^2-2 a b \cos (c+d x)+3 a^2 \cos (2 (c+d x))\right ) \sin (c+d x)\right )}{30 a^3 d \sqrt {a+b \sec (c+d x)}} \]

input
Integrate[1/(Sec[c + d*x]^(5/2)*Sqrt[a + b*Sec[c + d*x]]),x]
 
output
(Sqrt[Sec[c + d*x]]*(4*(9*a^3 + 9*a^2*b + 8*a*b^2 + 8*b^3)*Sqrt[(b + a*Cos 
[c + d*x])/(a + b)]*EllipticE[(c + d*x)/2, (2*a)/(a + b)] - 4*b*(7*a^2 + 8 
*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + 
 b)] + 2*a*(3*a^2 - 8*b^2 - 2*a*b*Cos[c + d*x] + 3*a^2*Cos[2*(c + d*x)])*S 
in[c + d*x]))/(30*a^3*d*Sqrt[a + b*Sec[c + d*x]])
 
3.7.53.3 Rubi [A] (verified)

Time = 1.95 (sec) , antiderivative size = 261, normalized size of antiderivative = 1.05, number of steps used = 18, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.720, Rules used = {3042, 4350, 3042, 4592, 27, 3042, 4523, 3042, 4343, 3042, 3134, 3042, 3132, 4345, 3042, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4350

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {\int \frac {-2 b \sec ^2(c+d x)-3 a \sec (c+d x)+4 b}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}}dx}{5 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {\int \frac {-2 b \csc \left (c+d x+\frac {\pi }{2}\right )^2-3 a \csc \left (c+d x+\frac {\pi }{2}\right )+4 b}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{5 a}\)

\(\Big \downarrow \) 4592

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {\frac {8 b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 a d \sqrt {\sec (c+d x)}}-\frac {2 \int \frac {9 a^2+2 b \sec (c+d x) a+8 b^2}{2 \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}dx}{3 a}}{5 a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {\frac {8 b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 a d \sqrt {\sec (c+d x)}}-\frac {\int \frac {9 a^2+2 b \sec (c+d x) a+8 b^2}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}dx}{3 a}}{5 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {\frac {8 b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 a d \sqrt {\sec (c+d x)}}-\frac {\int \frac {9 a^2+2 b \csc \left (c+d x+\frac {\pi }{2}\right ) a+8 b^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 a}}{5 a}\)

\(\Big \downarrow \) 4523

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {\frac {8 b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 a d \sqrt {\sec (c+d x)}}-\frac {\frac {\left (9 a^2+8 b^2\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}}dx}{a}-\frac {b \left (7 a^2+8 b^2\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}}dx}{a}}{3 a}}{5 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {\frac {8 b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 a d \sqrt {\sec (c+d x)}}-\frac {\frac {\left (9 a^2+8 b^2\right ) \int \frac {\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}-\frac {b \left (7 a^2+8 b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}}{3 a}}{5 a}\)

\(\Big \downarrow \) 4343

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {\frac {8 b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 a d \sqrt {\sec (c+d x)}}-\frac {\frac {\left (9 a^2+8 b^2\right ) \sqrt {a+b \sec (c+d x)} \int \sqrt {b+a \cos (c+d x)}dx}{a \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b}}-\frac {b \left (7 a^2+8 b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}}{3 a}}{5 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {\frac {8 b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 a d \sqrt {\sec (c+d x)}}-\frac {\frac {\left (9 a^2+8 b^2\right ) \sqrt {a+b \sec (c+d x)} \int \sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b}}-\frac {b \left (7 a^2+8 b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}}{3 a}}{5 a}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {\frac {8 b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 a d \sqrt {\sec (c+d x)}}-\frac {\frac {\left (9 a^2+8 b^2\right ) \sqrt {a+b \sec (c+d x)} \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}dx}{a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \left (7 a^2+8 b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}}{3 a}}{5 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {\frac {8 b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 a d \sqrt {\sec (c+d x)}}-\frac {\frac {\left (9 a^2+8 b^2\right ) \sqrt {a+b \sec (c+d x)} \int \sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \left (7 a^2+8 b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}}{3 a}}{5 a}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {\frac {8 b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 a d \sqrt {\sec (c+d x)}}-\frac {\frac {2 \left (9 a^2+8 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \left (7 a^2+8 b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}}{3 a}}{5 a}\)

\(\Big \downarrow \) 4345

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {\frac {8 b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 a d \sqrt {\sec (c+d x)}}-\frac {\frac {2 \left (9 a^2+8 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \left (7 a^2+8 b^2\right ) \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sqrt {b+a \cos (c+d x)}}dx}{a \sqrt {a+b \sec (c+d x)}}}{3 a}}{5 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {\frac {8 b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 a d \sqrt {\sec (c+d x)}}-\frac {\frac {2 \left (9 a^2+8 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \left (7 a^2+8 b^2\right ) \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \sqrt {a+b \sec (c+d x)}}}{3 a}}{5 a}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {\frac {8 b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 a d \sqrt {\sec (c+d x)}}-\frac {\frac {2 \left (9 a^2+8 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \left (7 a^2+8 b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}}dx}{a \sqrt {a+b \sec (c+d x)}}}{3 a}}{5 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {\frac {8 b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 a d \sqrt {\sec (c+d x)}}-\frac {\frac {2 \left (9 a^2+8 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \left (7 a^2+8 b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{a \sqrt {a+b \sec (c+d x)}}}{3 a}}{5 a}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {\frac {8 b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 a d \sqrt {\sec (c+d x)}}-\frac {\frac {2 \left (9 a^2+8 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {2 b \left (7 a^2+8 b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{a d \sqrt {a+b \sec (c+d x)}}}{3 a}}{5 a}\)

input
Int[1/(Sec[c + d*x]^(5/2)*Sqrt[a + b*Sec[c + d*x]]),x]
 
output
(2*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(5*a*d*Sec[c + d*x]^(3/2)) - (-1 
/3*((-2*b*(7*a^2 + 8*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c 
+ d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(a*d*Sqrt[a + b*Sec[c + d*x]] 
) + (2*(9*a^2 + 8*b^2)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Se 
c[c + d*x]])/(a*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]))/ 
a + (8*b*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(3*a*d*Sqrt[Sec[c + d*x]]) 
)/(5*a)
 

3.7.53.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 4343
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[Sqrt[a + b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*S 
qrt[b + a*Sin[e + f*x]])   Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[{a 
, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4345
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[Sqrt[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/S 
qrt[a + b*Csc[e + f*x]])   Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[ 
{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4350
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[Cos[e + f*x]*(d*Csc[e + f*x])^(n + 1)*(Sqrt[a + 
 b*Csc[e + f*x]]/(a*d*f*n)), x] + Simp[1/(2*a*d*n)   Int[((d*Csc[e + f*x])^ 
(n + 1)/Sqrt[a + b*Csc[e + f*x]])*Simp[(-b)*(2*n + 1) + 2*a*(n + 1)*Csc[e + 
 f*x] + b*(2*n + 3)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] 
 && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]
 

rule 4523
Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d 
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Simp[A/a   I 
nt[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Simp[(A*b - a*B) 
/(a*d)   Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ 
[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]
 

rule 4592
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d 
*Csc[e + f*x])^n/(a*f*n)), x] + Simp[1/(a*d*n)   Int[(a + b*Csc[e + f*x])^m 
*(d*Csc[e + f*x])^(n + 1)*Simp[a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)* 
Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d 
, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]
 
3.7.53.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2288\) vs. \(2(279)=558\).

Time = 8.75 (sec) , antiderivative size = 2289, normalized size of antiderivative = 9.19

method result size
default \(\text {Expression too large to display}\) \(2289\)

input
int(1/sec(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
2/15/d/a^3/((a-b)/(a+b))^(1/2)*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/sec 
(d*x+c)^(5/2)/(cos(d*x+c)+1)*(-4*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*co 
s(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)- 
csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b*sec(d*x+c)+16*(1/(cos(d*x+c)+1))^( 
1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b 
))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2*sec(d*x+c)+18 
*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)* 
EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2) 
)*a^2*b*sec(d*x+c)-16*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/( 
cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)) 
,(-(a+b)/(a-b))^(1/2))*a*b^2*sec(d*x+c)-2*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b 
)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(co 
t(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b*sec(d*x+c)^2+8*(1/(cos(d* 
x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(( 
(a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2*sec 
(d*x+c)^2+9*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c) 
+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/( 
a-b))^(1/2))*a^2*b*sec(d*x+c)^2-8*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*c 
os(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c) 
-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2*sec(d*x+c)^2+3*((a-b)/(a+b))^(...
 
3.7.53.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 464, normalized size of antiderivative = 1.86 \[ \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx=-\frac {4 \, \sqrt {2} {\left (-3 i \, a^{2} b - 4 i \, b^{3}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + 4 \, \sqrt {2} {\left (3 i \, a^{2} b + 4 i \, b^{3}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + 3 \, \sqrt {2} {\left (-9 i \, a^{3} - 8 i \, a b^{2}\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) + 3 \, \sqrt {2} {\left (9 i \, a^{3} + 8 i \, a b^{2}\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - \frac {6 \, {\left (3 \, a^{3} \cos \left (d x + c\right )^{2} - 4 \, a^{2} b \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{45 \, a^{4} d} \]

input
integrate(1/sec(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")
 
output
-1/45*(4*sqrt(2)*(-3*I*a^2*b - 4*I*b^3)*sqrt(a)*weierstrassPInverse(-4/3*( 
3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3* 
I*a*sin(d*x + c) + 2*b)/a) + 4*sqrt(2)*(3*I*a^2*b + 4*I*b^3)*sqrt(a)*weier 
strassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*( 
3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a) + 3*sqrt(2)*(-9*I*a^3 - 8* 
I*a*b^2)*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 
 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 
 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a)) + 3*sqr 
t(2)*(9*I*a^3 + 8*I*a*b^2)*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^ 
2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^ 
2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) 
+ 2*b)/a)) - 6*(3*a^3*cos(d*x + c)^2 - 4*a^2*b*cos(d*x + c))*sqrt((a*cos(d 
*x + c) + b)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^4*d)
 
3.7.53.6 Sympy [F]

\[ \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {a + b \sec {\left (c + d x \right )}} \sec ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate(1/sec(d*x+c)**(5/2)/(a+b*sec(d*x+c))**(1/2),x)
 
output
Integral(1/(sqrt(a + b*sec(c + d*x))*sec(c + d*x)**(5/2)), x)
 
3.7.53.7 Maxima [F]

\[ \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {1}{\sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate(1/sec(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(1/(sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^(5/2)), x)
 
3.7.53.8 Giac [F]

\[ \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {1}{\sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate(1/sec(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(1/(sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^(5/2)), x)
 
3.7.53.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

input
int(1/((a + b/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(5/2)),x)
 
output
int(1/((a + b/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(5/2)), x)